# Ejected Star: How fast is fast?

30 years ago, astronomer Jack Hills demonstrated the math behind what has become known as the “Hills Mechanism”. Until this week, it described a celestial event that had never been observed.* But astronomers have always agreed that the physics and math should make what he described possible outcome, if suitable conditions are in play…

Hills explained that under the right conditions, a star might be accelerated to incredible speeds — and might even be flung out of its galaxy. The conditions:

• A binary star passes close to a black hole, like the one at the center of our galaxy
• The orbiting stars are caught in the gravity of a black hole, but because of their speed and distance, they are not sucked in.

If conditions are right, one star ends up orbiting the back hole while the other is jettisoned at incredible speed, yet holding onto its mass and shape. All that energy comes from the gravity of the black hole and former momentum of the captured star. [video animation, 20 seconds]

This week, astronomers found clear evidence of this amazing event and traced it back to our galactic center: Five million years ago — as our ancestors learned to walk upright — a star that passed close to the black hole at The Milky Way center was flung away at a stunning 6 million kph. It is traveling so fast, that it is no longer bound to our galaxy or our galactic cluster. It is headed out into the vast intergalactic void.

How fast is fast?

• Rifle Bullet: Can exceed Mach 3 (2,300 mph)
• Apollo Rocket: Reached 25,000 mph; Earth escape velocity.
• Juno Probe: 165,000 mph, a record prior to 2019. (It used Jupiter’s gravity to accelerate)
• Parker Probe: 213,000 mph (Nov 2019), but will soon reach 430,000 mph

* Prior to this week, astronomers have observed a few stars traveling inexplicably at incredible speeds. But this is the first time, that they have traced the trajectory back to a black hole and the conditions described by Jack Hills.

Reference:

# Greta Thunberg: Most important message ever

I am at a loss for words. Seriously, there is not much I can add to the 1st video below.

Information about climate change is all around us. Everyone knows about it; Most people understand that it is real and it that poses an existential threat, quite possibly in our lifetimes. In our children’s lives, it will certainly lead to war, famine, cancer, and massive loss of land, structures and money. It is already raising sea level and killing off entire species at thousands of times the natural rate.

Yet, few people, organizations or governments treat the issue with the urgency of an existential crisis. Sure! A treaty was signed and this week, Jeff Bezos committed to reducing the carbon footprint of the world’s biggest retailer. But have we moved in the right direction since the Paris Accords were signed 4 years ago? On the contrary, we have accelerated the pace of self-destruction.

I want speak out—and, of course, this Blog post is my way of doing it. But I am at a loss for words, because everything I want to say is so deftly articulated by 15 year old Greta Thunberg. I cannot possibly add to or improve upon her message.

Greta is not your typical hero. She is a child, has Asperger’s, and is a high school Sophomore, yet she is a truant. That is, she regularly skips class, because she feels that doing her own thing is more important than education. She is absolutely right…

This week Greta educated the UN, US Congress and former President Obama (because the current president cannot grasp her message). She also led a protest campaign that attracted millions of Millennials in more than 100 cities across Asia, Europe, Australia, and the Americas.

Greta Thunberg is racing to save the world—and all of humanity while she is at it.

Rather than link to her talk before Congress or the UN, or this overly-slick PSA, I choose three videos. The last one is only 49 seconds). Don’t have the time to pause for a video?—not even at bed time? Please reconsider. This one is really, really important. Even more important than not texting and driving. If ever you felt that there was something to communicate to your circle and pass onto your family, this is it. Your children are counting on you.

In the first two videos, Greta makes interesting point. If ever you imagined hearing an alarm bell, your ears should be clanging with these statements…

▪ 1st video, below

Greta was puzzled by an apparent incongruity when she was 8 years old: How is it that a widely reported existential threat has not resulted in a Stop-The-Presses, all out campaign to eliminate the threat? How is it that a majority of people claim to support the cause, applaud at speeches, support the Paris Accords—and yet the burning of fossil fuels has increased and the destruction of jungles & rain forests is accelerating? The carbon budget of the Paris Accords has already been ⅔ consumed! Even worse, scientists now believe that the budget was too relaxed. Even back then (3 years ago) things were worse than we had believed.

▪ 2nd video, below

Although Greta states it without emotion (a symptom of Asberger’s), she was surprised to find that America has climate change ‘believers’ and ‘non-believers’. Without a hint of sarcasm, she explains that in Sweden, everyone understands the facts.

Please view these videos. Is there anything in your day that is more important? I doubt it. Saving the planet is no longer a slogan. It’s our only chance at survival—and that chance is getting slimmer with each day.

1. Ted Talk (11 min), Stockholm Aug 2018

2. Trevor Noah TV episode (9 min), Sep 14, 2019

3. Meeting President Obama (49 sec), Sep 18, 2019

# Stunning 1st image of a Black Hole

Eight of 347 scientists: Their achievement is above the fold in major newspapers

Yesterday (Sep 5, 2019), the Breakthrough Prize Foundation awarded \$21.6 million US dollars to the scientists behind a stunning achievement. They imaged a black hole. Although the image was announced and released 5 months ago, the story is still unfolding.

The Breakthrough Prize is funded by Russian-Israeli billionaire Yuri Milner. It is the highest-paying science prize for researchers in life science, math, and physics.

There are many black holes in our galaxy and some small ones in our own galactic “neighborhood”. Yet the EHT team* focused on M87, a black hole in the center of another Galaxy, 55 million light years from our solar system.

This is pretty far, but it is a massive black hole with a bright accretion disk (stuff around the event horizon), and it is orthogonal to our vantage point. How big is the M87 black hole? It is bigger than our entire solar system!

At this unfathomable distance, it is difficult to image anything smaller than an entire galaxy. But by combining data from instruments and math teams around the world, scientists released in April an actual photograph. To be precise, it is the shadow of a black hole, but it clearly shows the accretion disk, event horizon and a hole in the middle. In fact, it shows a perfect, glowing donut.

* The EHT = Event Horizon Telescope

To achieve the implausible, scientists combined data from 8 radio telescopes around the world, including two operated by the European Southern Observatory in Chile (producer of the first video, below). Although data was captured as radio waves, a team of 347 scientists pieced the information together into an actual image. What you see in the paragraph above is not an illustration based on data. It is a genuine photograph.

As you view the 1st video below, you may not feel that it is new. Even with the Big Bang in question, black holes are certain fact, and images have been circulating for years. But—until now—those were all artist’s renderings. There has never been an actual photo of a black hole. This is a first.

A web search turns up many videos about the achievement. Some are less than 2 minutes, and some are 2 hour documentaries. I like these two videos: [1] a 17 minute video documenting the effort to achieve this milestone and clearly explaining the result—and [2] an 11½ minute Ted Talk:

# ISS hole: We will look back on Sept 2018

Someday, people across the world will look back on September 2018, much like we look back on the terror attacks of 9/11 or the safe return of Apollo 13 in 1970. They are touchstone moments in world history. For Americans, they are as indelible as Pearl Harbor, the assassination of John F. Kennedy or the first moon landing.

So, what happened just now? The month isn’t even half over, and the only events we hear about on the news atre related to Hurricane Florence and Paul Manafort. (In case you live under a rock or are reading this many years hence, the hurricane made landfall on the coast of the Carolinas, and the lobbyist / political consultant / lawyer / Trump campaign chairman pled guilty to charges and has agreed to cooperate in the continuing Mueller investigation).

No—I am not referring to either event on the USA east coast. I am referring to a saga unfolding 254 miles above the Earth—specifically a Whodunit mystery aboard the International Space Station (ISS). NASA hasn’t seen this level of tawdry intrigue since astronaut Lisa Marie Nowak attacked a rival for another astronaut’s affection—driving across the country in a diaper to confront her love interest.

So What is the Big Deal This Week?!

It didn’t begin as a big deal—and perhaps this is why mainstream news services are slow to pick up on the latest information. But now, in my opinion, it is a very big deal.

A small hole was discovered on a Russian Soyuz spacecraft (a lifeboat) attached to the International Space Station. That hole, about the size of a pea, resulted in the slow decompression of atmosphere. The air that our astronauts breathe was leaking out of ISS and into the void of space.

So far, the story is unremarkable. Ground scientists issued two comfort statements about the apparent accident. They addressed the possible cause and the potential risk:

1. This small hole could have occurred on the ground (during construction). Alternatively, it could be the result of a micro-meteorite or even man-made space debris. Perhaps a fleck of varnish peeled off of a satellite and collided at high speed with the massive, orbiting space station. No problem. The ISS and each commuter spacecraft that dock with it are designed to sustain collisions with small particles—even ones that punch a pea-sized hole through the hull.
2. Air pressure in the ISS and in each spacecraft is only 1 atmosphere. This type of small leak could effectively be stemmed by simply applying duct tape.

The initial news event was interesting to space buffs, but it didn’t seem to present a significant threat to our astronauts, nor require a massive technical response. You may recall that duct tape played a critical role in getting the Apollo 13 astronauts safely back to Earth almost 50 years ago. The crisis that they faced was far worse. The solution required extensive impromptu engineering both in Houston and up in the spacecraft. What an awesome historical echo and footnote to an event that captured the hearts and minds of so many people back in 1970.

But the story does not end with a piece of duct tape. In fact, it just got much more interesting…

After a few days, NASA revealed that the hole was intentionally drilled, and the deed probably occurred while the ship was docked at the space station. Since there is no log of activity with tools in this section of the laboratory, it strongly suggests an act of sabotage by one of the astronauts on board.

And now, we have some new information: Guided by ground engineers, astronauts fished an endoscope through the hole to inspect the outside of the spacecraft. Guess what?! That same drill bit damaged the meteorite shield which stands 15 mm beyond the pressurized hull of the spacecraft. This will add significant risk to anyone traveling back to earth in the damaged ship.

One theory is that a member of the crew wanted to create the conditions to more quickly return to Earth. Now, that return trip may present and elevated risk to occupants.
This story has not yet concluded, of course. It will likely conclude with tragedy or triumph. In the better scenario, no one will die—but successful return and reentry will be followed by a criminal conviction or court martial. I am having difficulty envisioning an alternate outcome.
Read about it here. The story is unfolding, but the details are utterly fascinating.

# NASA director reverses on climate change, after 1 month

For millennia, our planet has sustained a robust ecosystem; healing each deforestation, algae bloom, pollution or imbalance caused by natural events. Before the arrival of an industrialized, destructive and dominant global species, it could pretty much deal with anything short of a major meteor impact. In the big picture, even these cataclysmic events have not destroyed the environment—they just change the course of evolution and rearrange the dog pile. A new alpha animal emerges and thrives.

But with industrialization, the race for personal wealth, nations fighting nations, and modern comforts, we have recognized that our planet is not invincible. This is why I serve on the board of Lifeboat Foundation. The foundation is all about recognizing the limits to growth and protecting our fragile environment.

Check out this April news article on Trump’s appointment of Jim Bridenstine, a vocal climate denier, as head of NASA. NASA is one of the biggest agencies on earth. Despite a lack of training or experience—without literacy in science, technology or astrophysics—he was handed an enormous responsibility, a staff of 17,000 and a budget of \$19 billion.

In 2013, Bridenstine criticized Obama for wasting taxpayer money on climate research, and claimed that global temperatures stopped rising 15 years ago.

The Vox News headline states “Trump’s next NASA administrator is a Republican congressman with no background in science”. It points out that Jim Bridenstine’s confirmation has been controversial — even among members of his own party.

Sometimes, flip-flopping is a good thing

In less than one month, Jim Bridenstine has changed—he has changed a lot!

After less then a month as head of NASA, he is convinced that climate change is real, that human activity is the significant cause and that it presents an existential threat. He has changed from climate denier to a passionate advocate for doing whatever is needed to reverse our impact and protect the environment.

What changed?

Bridenstine acknowledges that he was a denier, but feels that exposure to the evidence and science is overwhelming and convincing—even in with just a few weeks exposure to world class scientists and engineers.

For anyone who still claims that there is no global warming or that the evidence is ‘iffy’, it is worth noting that Bridenstine is a hand-picked goon. His appointment was recommended by right wing conservatives and rubber stamped by the idiot-in-chief (the original stooge for the ultra right). He was a Denier—but had a sufficiently open mind to listen to experts and review the evidence.

Do you suppose that the US president is listening? Do you suppose that he will grasp the most important issues of this century? What about other world leaders, legislative bodies and rock stars? Will tey use their powers or influence to do the right thing? For the sake of our existence, let us hope they follow the lead of Jim Bridenstine, former climate denier!

Ellery Davies co-chairs CRYPSA, hosts the New York Bitcoin Event and is keynote speaker at Cryptocurrency Conferences. He sits on the New Money Systems board of Lifeboat Foundation. Book a presentation or consulting engagement.

# Where are the aliens? Solutions to Fermi Paradox

The Fermi Paradox poses an age-old question: With light and radio waves skipping across the galaxy, why has there never been any convincing evidence of other life in the universe—or at least another sufficiently advanced civilization that uses radio? After all, evidence of intelligent life requires only that some species modulates a beacon (intentionally or unintentionally) in a fashion that is unlikely to be caused by natural phenomena.

The Fermi Paradox has always fascinated me, perhaps because SETI spokesperson, Carl Sagan was my astronomy professor at Cornell and—coincidentally—Sagan and Stephen Spielberg dedicated a SETI radio telescope at Oak Ridge Observatory around the time that I moved from Ithaca to New England. It’s a 5 minute drive from my new home. In effect, two public personalities followed me to Massachusetts.

What is SETI?

In November of 1984, SETI was chartered as a non-profit corporation with a single goal. In seeking to answer to the question “Are we alone?” it fuels the Drake equation by persuading radio telescopes to devote time to the search for extraterrestrial life and establishing an organized and systematic approach to partitioning, prioritizing, gathering and mining signal data.

Sagan explains the Drake Equation

Many of us associate astronomer Carl Sagan and Hollywood director, Stephen Spielberg, with SETI. They greased the path with high-profile PR that attracted interest, funding and radio-telescope partnerships. But, they were neither founders nor among the early staff. The founders, John Billingham and Barney Oliver assembled a powerhouse board of trustees, which included Frank Drake (Sagan’s boss at Cornell), Andrew Fraknol, Roger Heyns and William Welch. Among first hires were Jill Tarter, Charles Seeger, Ivan Linscott, Tom Pierson and Elyse Murray (now Elyse Pierson). Of course, Carl Sagan has long championed the search for extraterrestrial intelligence, and joined SETI as Trustee near the end of his life.

In The Birth of SETI, Tom Pierson reminisces about the early days of SETI. Also check out SETI pioneer, Jill Tarter, explaining how to write a message that will be understood by an alien civilization. This and the Drake equation was a topic of Sagan’s Astronomy 101 class at Cornell. In fact, using math & science as a universal language is the design philosophy behind the Pioneer 10 plaque created by Linda Sagan.

There is a lot of lore and love surrounding SETI, because its goal pulls directly on our need to understand our place in the cosmos. This week, SETI is going through a bit of transformation as it prepares for the next chapter in the search. So, where are the aliens? Are the funds and brainpower spent on peeping for aliens an investment in our own civilization, a form of entertainment, or a colossal waste?

This fascinating video offers 10 plausible solutions to Fermi Paradox. Fascinating, that is, if you can get past John Michael Godier’s dry, monotone narration. But. take my word for it. The concept and the content is exciting.

# Does mystery of Quantum Physics prove God exists?

Ironically, my more popular posts are ones furthest from my passion and core interests. They are larks—never intended to go viral. This is about one of them…

Apart from family, I typically steer clear of religious topics. I identify with a mainstream religion, but it is completely beside the purpose of this Blog, and it is a personal affair.[1]

Yet, here we discuss a religious topic, after all. Let’s get started…

Question

Do atheists agree that the fact that we can’t understand quantum physics is at least somewhat evidence of Allah?

Do you assert that a failure to understand something is evidence of God?

I don’t fully understand a triple-Lutz (ice skating) or the Jessica stitch (needlepoint)—and I certainly don’t get why an electric dryer leaves moisture on light weight linens, when a gas dryer gets them bone-dry before the plush towels.

Is my inability to solve these mysteries evidence of Allah (or Yahweh, haShem or Y’Shewa)? Of course, not! It has nothing to do with God or religion. The fact that I don’t quite grasp every complex task or unexplained science is not evidence of God, it is evidence of my own ignorance.

On the other hand, I am fortunate to understand quantum physics—both academically and from an innate perspective. That is, behavior of waves and matter on a subatomic scale make perfect sense to me.

You would be correct to point out that certain quantum behavior seems to violate common sense:

• Probabilistic behavior. (i.e. Schrödinger’s cat is both dead and alive at once)
• Measure photons or electrons as a wave, and it no longer behaves like particles
• Entangled electrons (Einstein called it ‘Spooky action at a distance’)
• The EPR Paradox (entanglement experiment demonstrates causality based on future knowledge. It seems profoundly unbelievable!)

But these things only seem strange, because we do not experience them first hand given our size and our senses. As the math and the mechanisms are understood through research and experimentation, the behavior begins to fit within physical laws as we understand them. Then, we can extrapolate (predict) other behaviors.

For example, as we begin to understand quantum mechanics, we can design a computer, an encryption mechanism—and eventually a teleportation system—that exploits the physical properties and laws.

1 I do not appreciate the outreach of evangelism. In my opinion, religious discussion is best amongst a like-minded community.

An argument against Evangelism

This isn’t a rant against personal faith. It is a rant against the idea that you should ‘push’ your views on unrelated individuals, especially strangers—even if you believe that your view offers salvation.

Anyone who has lived in a home or apartment, dormed at a college or housed in the military has been approached by well-intentioned Mormons, Jehovah’s Witness, Baptists, Hari Krishna or other evangelicals. I hold nothing against such missionaries. They are marketing conscience and faith in what they see as an act of love. Unfortunately, society is worse off for this type of love. They are horribly misguided. They mean well and they may have the inside track on creation, but their understanding of equality and civil liberties is naïve.

Is this a position of Intolerance? — Quite the opposite!

Even in far off lands, instant communication, air travel and nuclear weapons render our fiefdoms meaningless beyond the realms of taxation, defense, and road repair. We live in a pluralistic melting pot. The shrinking planet demands that we coexist. I have always felt that the only thing of which we can be intolerant is intolerance itself.

So, why do I shun religious outreach? Because, arguing that your book is better than mine can only be won on faith—and faith is both personal and unprovable. Sure, tolerance is often built on religious ideals. To function as a society without killing each other, tolerance is a necessity. But, tolerance and humanity are also built into the Golden Rule and every democratic constitution. Any attempt to persuade others to adopt your core beliefs about origin, doctrine or blasphemy is pointless and an affront to everyone elses’ beliefs.

Whew! It took courage to get that off my chest. I hope that my friend, Hiawatha Bray forgives me.

I have never seen any contradiction. Only someone who believes that the Earth was created in the past 6,000 years ago sees a contradiction. That belief is as goofy as the sun orbiting the earth.

If there is a God, then I suppose it explains the energy and matter that surrounds us. And if this is the case, he followed up by proclaiming the finely tuned natural laws of physics and biochemistry, and set everything in motion. Oh rejoice in his splendor! Because, after billions of years, life arose—and we are the interim products of an expanding universe. It’s awe-inspiring, but it certainly presents no contradiction.

I don’t consider myself an atheist. And despite offering an agnostic explanation of the universe, my religion is my business and not yours. But, I certainly believe in science! I side with Bill Nye and the late Carl Sagan (he was my former professor). No one with a sense of their surroundings and an appreciation for facts can ignore that the Earth and the universe have existed for billions of years.

We may be the product of an intelligent God, but if we are, we will never know. We lack to tools to discern the question that predates all other questions. Pointing to ancient scripture is nonsense. The scripture was written by men, seeking to explain everything that they observed in their times. Yet, these men had fewer facts about the universe than we have now. The faith that most believers associate with scripture is based on respect for the practices and beliefs of their parents.

Moreover, the men who created these book (the bibles of any religion), also created God. Why? To deal with mortality, explain tragedy, control the masses—or perhaps as a mental exercise. It may even be a byproduct of what they were ingesting and smoking.

# What if Apollo 11 had failed? Nixon‘s undelivered speech

In 1969, William Safire was President Nixon’s speech writer. He wrote the short speech shown below, and delivered it to Chief of Staff, H.R. Haldeman. The speech was to be read by Nixon in the event that the Apollo 11 lunar lander failed to launch or that some other problem caused the lander or mothership to crash back onto the surface of the moon.

In 1969, the space race was at full throttle. Russians were first to launch a satellite, send a dog and a man into space,* and perform an extravehicular space walk. America was under great pressure to fulfill John F. Kennedy’s promise and beat the Russians in landing a man on the moon. Today, former engineers at NASA acknowledge that they believed the chances of such a catastrophe were more than 50%.

William Safire was a brilliant orator and linguist, known primarily as a columnist and journalist. He received the Presidential Medal of Freedom (from George Bush in 2006). He died in 2009.

The Apollo 11 disaster speech is pure poetry. It fits Nixon’s demeanor, while inspiring the public to continue support for exploration despite such a spectacular failure.

William Safire’s speech for President Nixon—in the event of a moon landing disaster:

Fate has ordained that the men who went to the moon to explore in peace will stay on the moon to rest in peace.

These brave men, Neil Armstrong and Edwin Aldrin, know that there is no hope for their recovery. But they also know that there is hope for mankind in their sacrifice.

These two men are laying down their lives in mankind’s most noble goal: the search for truth and understanding.

They will be mourned by their families and friends; they will be mourned by their nation; they will be mourned by the people of the world; they will be mourned by a Mother Earth that dared send two of her sons into the unknown.

In their exploration, they stirred the people of the world to feel as one; in their sacrifice, they bind more tightly the brotherhood of man.

In ancient days, men looked at stars and saw their heroes in the constellations. In modern times, we do much the same, but our heroes are epic men of flesh and blood.

Others will follow, and surely find their way home. Man’s search will not be denied. But these men were the first, and they will remain the foremost in our hearts.

For every human being who looks up at the moon in the nights to come will know that there is some corner of another world that is forever mankind.

* The US was first to send an animal into space. On June 11, 1948, Albert 1, a rhesus monkey, was launched on a V2 rocket. But this was a suborbital flight. It cleared the atmosphere but could not have sailed away from Earth’s gravity, nor even achieved orbit. The first animal to attain orbit was launched more than 9 years later. A dog, Laika, launched on board the Soviet Sputnik 2 spacecraft on November 3, 1957.

Source: Watergate.info

# Fundamental Particles & Forces: What do we know?

Do you remember all the hoopla last year when the Higgs Boson was confirmed by physicists at the Large Hadron Collider? That’s the one called the ‘God particle’, because it was touted as helping to resolve the forces of nature into one elegant theory. Well—Not so fast, bucko!…

First, some credit where credit is due: The LHC is a 27-kilometer ring of superconductor magnets interspersed by accelerators that boost the energy of the particles as they whip around and smash into each other. For physicists—and anyone who seeks a deeper understanding of what goes into everything—it certainly inspires awe.

Existence of the Higgs Boson (aka, The God Particle) was predicted. Physicists were fairly certain that it would be observed. But its discovery is a ‘worst case’ scenario for the Standard Model of particle physics. It points to shortcomings in our ability to model and predict things. Chemists have long had a master blueprint of atoms in the Periodic Table. It charts all the elements in their basic states. But, physicists are a long way from building something analogous. That’s because we know a lot more about atomic elements than the fundamental building blocks of matter and energy.   [continue below image]

So, what do we know about fundamental particles and the forces that bind them? HINT: There are 61 that we know of or have predicted and at least two about which we don’t yet have any clue: The pull of Gravity and dark matter / dark energy.

This video produced by the BBC Earth project is an actors’ portrayal of a news interviewer and a particle physicist. If we were to simply watch these two guys talk in front of a camera, it would be pretty boring (unless, of course, the physicist has charm and panache of the late Richard Feynman or my own Cornell professor, Carl Sagan). So, to spice it up a bit, BBC has added a corny animation of two guys talking with an anthropomorphic illustration of cartoon particles. Corny? Yes! But it helps to keep a viewer captivated. And, for any armchair physicist, the story is really exciting!

See the video here. It takes a moment to load—but for me, the wait is worthwhile.

# Solar System Map: Surprisingly deceptive

What’s wrong with this illustration of the planets in our solar system?            »

For one thing, it suggests that the planets line up for photos on the same solar ray, just like baby ducks in a row. That’s a pretty rare occurrence—perhaps once in several billion years. In fact, Pluto doesn’t even orbit on the same plane as the planets. Its orbit is tilted 17 degrees. So, forget it lining up with anything, except on rare occasions, when it crosses the equatorial plane. On that day, you might get it to line up with one or two planets.

But what about scale? Space is so vast. Perhaps our solar system looks like this ↓

No such luck! Stars and planets do not fill a significant volume of the void. They are lonely specs in the great enveloping cosmic dark.* Space is mostly filled with—well—space! Lots and lots of it. In fact, if Pluto and our own moon were represented by just a single pixel on your computer screen, you wouldn’t see anything around it. Even if you daisy chain a few hundred computer screens, you will not discern the outer planets. They are just too far away.

Josh Worth has created an interactive map of our solar system. For convenience, it also assumes that planets are lined up like ducks. But the relative sizes and distance between planets are accurate. Prepare to change your view of the cosmos…

1/7 the way to Pluto. I enlarged Jupiter’s moons. On a full-screen view, they are barely visible.

Just swipe your finger from the right edge of the screen to move away from the sun. Despite a fascinating experience (and many cute, provocative Easter eggs hidden between the planets), few readers swipe all the way out to Pluto and the author credits. On my high-resolution monitor, it requires more than a thousand swipes. Imagine if the Moon had been more than 1 pixel…It would take a long, long time! I would rather go out to dinner and a movie. But I urge you to travel at least to Jupiter. At 1/7 of the trip to Pluto, it should take less than 5 minutes.

On this scale, you won’t see the 1½ or 2 million asteroids between Mars and Jupiter. They aren’t large enough to merit a pixel. As Josh states, “Most space charts leave out the most significant part – all the space.” (an Easter egg at 1.12 billion km on the map).

* I borrowed this phrase from my former Cornell professor, Carl Sagan. He uses it in Pale Blue Dot [timestamp 2:14.]. This video tribute became a touchstone in my life; even more than having Sagan as a professor and mentor.

If you view it, be sure to also view Consider Again, Sagan’s follow-up in the video below. It is a thought-provoking observation of human-chauvinism throughout history—even among ancient Greeks. Carl isn’t the first atheist, of course. But he is eloquent in describing mankind’s ego trip: The delusion of a privileged place in the universe, or the religious depiction of God and his relationship with our species.

Related:

Credit:  ▪ Josh Worth and Sachin Gadhave who offers an illustrative answer at Quora.com

Ellery Davies co-chairs Crypsa & Bitcoin Event, columnist & board member at Lifeboat, editor
at WildDuck and will deliver the keynote address at Digital Currency Summit in Johannesburg.

# US withdrawal from Paris accord; Universal disappointment

Yesterday, I had a fantasy. One that I passionately hoped would become reality. Minutes before Trump announced the withdrawal of the United States from the Paris Climate Accord, I began to daydream…

• I dreamt that Trump might listen to his top science advisors and his daughter
• I dreamt that he might not gamble our existence on his minority opinion that humans cannot help rescue the environment.
• I dreamt that he would recognize that clean energy jobs trump legacy coal mining
• I dreamt that he would avoid export tariffs for failing to respect international norms
• I dreamt that he would stop pandering to Yahoos and stand for something worthy and undeniable

No such luck! The USA has lost its Mojo—at least while it is led by a man with no grasp of science, history, morals or a global perspective. As Trump begun to speak, I was sucked into a cruel nightmare. But this nightmare is reality. It’s the reality of a buffoon representing you and me in our nation’s highest office.

Question: Time for a thought experiment. Can you guess the answer?…

What do Arnold Schwarzenegger, Elon Musk, The Pope, Richard Branson and French president, Emmanuel Macron, have in common?

Answer: They are all saddened that the US is surrendering its inspiration, leadership and common sense. Clean energy creates jobs, saves our planet, and aids the political and military stability of nations. Trump doesn’t sense any of this. He is validated by his base and his Yes men. He is a climate denier, and he doesn’t even read. He only watches what others say about him on television.                     [continue below video]

I cannot add perspective nor amplify President Macron’s urgent message to Americans. The clip is trending on Facebook with the caption: “French president destroys Trump in 5 words”. This suggest that he is taking a jab at Trump; mocking his poor grasp on science and the environment. But, politics plays no role in this message. It is about global impact and opportunity…

The French president hasn’t made a fool of Trump. Trump has brought shame onto his office and made a fool of our system of government, all on his own. His defiance of science and complete lack of understanding history risks irreparable harm to our planet. Trump feels that American jobs come before environmental policy. Yet, he is turning his back on the biggest jobs market since the steam engine.                 [Continue below video]

Perhaps more critically, his withdrawal from the global accord will bring about tariffs against US cars, steel, airplanes, timber and electronics. After all, by pulling out of the Paris accords, we ducking environmental safeties in an effort to make America great — or more accurately, in our effort to bury our heads in the sands and let the rest of the world take the lead on clean energy, efficiency, reducing pollution and averting global warming.

Response to US withdrawal…

Ellery Davies co-chairs Crypsa & Bitcoin Event, columnist & board member at Lifeboat, editor
at WildDuck and will deliver the keynote address at Digital Currency Summit in Johannesburg.

# What has changed since “Pale Blue Dot”?

I am not an astronomer or astrophysicist. I have never worked for NASA or JPL. But, during my graduate year at Cornell University, I was short on cross-discipline credits, and so I signed up for Carl Sagan’s popular introductory course, Astronomy 101. I was also an amateur photographer, occasionally freelancing for local media—and so the photos shown here, are my own.

Carl Sagan is aware of my camera as he talks to a student in the front row of Uris Hall

By the end of the 70’s, Sagan’s star was high and continuing to rise. He was a staple on the Tonight Show with Johnny Carson, producer and host of the PBS TV series, Cosmos, and he had just written Dragons of Eden, which won him a Pulitzer Prize. He also wrote Contact, which became a blockbuster movie, starring Jodie Foster.

Sagan died in 1996, after three bone marrow transplants to compensate for an inability to produce blood cells. Two years earlier, Sagan wrote a book and narrated a film based on a photo taken from space.

Pale Blue Dot is a photograph of Earth taken in February 1990, by Voyager 1 from a distance of 3.7 billion miles (40½ times the distance between earth and the sun). At Sagan’s request (and with some risk to the ongoing scientific mission), the space probe was turned around to take this last photo of Earth. In the photo, Earth is less than a pixel in size. Just a tiny dot against the vastness of space, it appears to be suspended in bands of sunlight scattered by the camera lens.

Four years later, Sagan wrote a book, Pale Blue Dot, based on the landmark 1990 photograph. More recently, numerous fans have dubbed a 3½ minute excerpt of the audio book version into viral video tributes. (The most popular of these videos appears below this paragraph). In this very popular clip, Sagan makes a compelling plea for reconciliation between humans and a commitment to care for our shared environment. He unites humanity, appealing to everyone with a conscience.     [Full text]

—Which brings us to a question: How are we doing? Are we getting along now? Are we treating the planet as a shared life-support system, rather than a dumping ground?

Sagan points out that hate and misunderstanding plays into so many human interactions. He points to a deteriorating environment and that we cannot escape war and pollution by resettling to another place. Most importantly, he forces us to face the the fragility of our habitat and the need to protect it. He drives home this point—not only explaining it, but framing it as an urgent choice between life and death.

It has been 22 years since Sagan wrote and produced Pale Blue Dot. What has changed? Change is all around us, and yet not much has changed. To sort it all out, let’s break it down into technology, our survivable timeline and sociology.

Technology & Cosmology

• Since Carl Sagan’s death, we have witnessed the first direct evidence of exoplanets. Several hundred have been observed and we will likely find many hundreds more each year. Some of these are in the habitable zone of their star.
• Sagan died about 25 years after the last Apollo Moon mission. It is now 45 years since those missions, and humans are still locked into low earth orbits. We have sent a few probes to the distant planets and beyond, but the political will and resources to conduct planetary exploration—or even return to the moon—is weak.
• A few private companies are launching humans, satellites or cargo into Space (Space-X, Virgin Galactic, Blue Origin). Dozens of other private ventures have not yet achieved manned flight or an orbital rendezvous, but it seems likey that some projects will succeed. Lift off is becoming commonplace—but almost all of these launches are focused on TV, communications, monitoring our environment or monitoring our enemies. The space program no longer produces the regular breakthroughs and commercial spin-offs that it did throughout the 70s and 80s.
continue below photo…

Sagan explains the Drake Equation. (Click for 2 photos with solution)

Survivable Timeline

• Like most scientists, Carl Sagan was deeply concerned about pollution, nuclear proliferation, loss of bio-diversity, war and global warming. In fact, the debate over global warming was just beginning to heat up in Sagan’s last years. Today, there is no debate over global warming. All credible scientists understand that the earth is choking, and that our activities are contributing to our own demise.
• In most regions, air pollution is slightly less of a concern than it was in the 1970s, but ground, water pollution, and radiation contamination are all more evident.
• Most alarmingly, we humans are even more pitched in posturing and in killing our neighbors than ever before. We fight over land, religion, water, oil, and human rights. We especially fight in the name of our Gods, in the name of national exceptionalism and in the name of protecting our right to consume disposable luxury gadgets, transient thrills and family vacations—as if we were a prisoner consuming his last meal.

We have an insatiable appetite for raw materials, open spaces, cars and luxury. Yet no one seems to be doing the math. As the vast populations of China and India finally come to the dinner table (2 billion humans), it is clear that they have the wealth to match our gluttony. From where will the land, water, and materials come? And what happens to the environment then? In Beijing, the sky is never blue. Every TV screen is covered in a thick film of dust. On many days, commuters wear filter masks. There is no grass in the parks and no birds in the sky. Something is very wrong. With apologies for a mixed metaphor, the canary is already dead while the jester continues to dance.

This plaque is bolted onto the first man-made object to leave our solar system

Sociology: Man’s Inhumanity to Man

• Sagan observed that our leaders are passionate about conquering each other, spilling blood over frequent misunderstandings, giving in to imagined self-importance. None of this has changed.
• Regarding our ability to get off of this planet, Sagan said “Visit? Perhaps…Settle? Not yet”. We still do not possess the technology or resources to settle even a single astronaut away from our fragile home planet. We won’t have both the technology and the will to do so for at least 75 years—and then, only a tiny community of scientists or explorers. It falls centuries shy of resettling a population.
• Hate, zealotry, intolerance and religious fervor are more toxic than ever before
• Today, the earth has a bigger population. Hate and misunderstanding has spread like cancer. Weapons of mass destruction have escaped the restraint of governments, oversight and safety mechanisms. They are now in the hands of intolerant and radical organizations that believe in martyrdom and that lack any desire to coexist within a global community.

• Nations, organizations and some individuals possess the technology to kill a million people or more. Without even targeting civilians, a dozen nations can lay waste to the global environment in weeks.

Is it time to revisit Pale Blue Dot? Is it still relevant? The urgency of teaching and heeding Carl Sagan’s words has never been more urgent than now.

Postscript:

Carl Sagan probably didn’t like me. When I was his student, I was a jerk.

Sagan was already a TV personality and author when I took Astronomy 101 in 1977. Occasionally, he discussed material from the pages of his just-released Dragons of Eden, or slipped a photo of himself with Johnny Carson into a slide presentation. He clearly was a star attraction during parent’s weekend before classes started.

Indeed, he often used the phrase “Billions and Billions” even before it led as his trademark. Although he seemed mildly mused that people noticed his annunciation and emphasis, he explained that he thought it was a less distracting alternate to the phrase “That’s billions with a ‘B’ ” when generating appreciation for the vast scope of creation.

At this time that Sagan was my professor, he appeared on the cover of Newsweek magazine. Like a lunkhead, I wrote to Newsweek, claiming that his adulation as a scientist was misplaced and that he was nothing more than an PR huckster for NASA and JPL in the vein of Isaac Asimov. I acknowledged his gift for popularizing science, but argued that he didn’t have the brains to contribute in any tangible way.

I was wrong, of course. Even in the role of education champion, I failed to appreciate the very powerful and important role that he played in influencing an entire generation of scientists, including, Neil DeGrasse Tyson. Although Newsweek did not publish my letter to the editor, someone on staff sent it to Professor Sagan! When the teaching assistant, a close friend of Sagan, showed me my letter, I was mortified.

Incidentally, I always sat in the front row of the big Uris lecture hall. As a student photographer, I took many photos, which show up on various university web sites from time to time. In the top photo, Professor Sagan is crouching down and clasping hands as he addresses the student seated next to me.

# Is San Bernardino iPhone fully Encrypted?

Here is a question that keeps me up at night…

Is the San Bernardino iPhone just locked or is it properly encrypted?

Isn’t full encryption beyond the reach of forensic investigators? So we come to the real question: If critical data on the San Bernardino iPhone is properly encrypted, and if the Islamic terrorist who shot innocent Americans used a good password, then what is it that the FBI thinks that Apple can do to help crack this phone? Doesn’t good encryption thwart forensic analysis, even by the FBI and the maker of the phone?

In the case of Syed Rizwan Farook’s iPhone, the FBI doesn’t know if the shooter used a long and sufficiently unobvious password. They plan to try a rapid-fire dictionary attack and other predictive algorithms to deduce the password. But the content of the iPhone is protected by a closely coupled hardware feature that will disable the phone and even erase memory, if it detects multiple attempts with the wrong password. The FBI wants Apple to help them defeat this hardware sentry, so that they can launch a brute force hack-trying thousands of passwords each second. Without Apple’s help, the crack detection hardware could automatically erase incriminating evidence, leaving investigators in the dark.

Mitch Vogel is an Apple expert. As both a former police officer and one who has worked with Apple he succinctly explains the current standoff between FBI investigators and Apple.

The iPhone that the FBI has is locked with a passcode and encrypted. If it was just locked with a passcode, like most iPhones, then something like the 4ukey iPhone Unlocker could be used to bypass and remove the passcode and gain entry into the phone. Download 4ukey iPhone Unlocker for Windows here, if you need these services. However, the iPhone in question is encrypted and this makes things somewhat more complicated. It can only be decrypted with the unique code. Not even Apple has that code or can decrypt it. Unlike what you see in the movies, it’s not possible for a really skilled hacker to say “It’s impossible”” and then break through it with enough motivation. Encryption really is that secure and it’s really impossible to break without the passcode.

What the FBI wants to do is brute force the passcode by trying every possible combination until they guess the right one. However, to prevent malicious people from using this exact technique, there is a security feature that erases the iPhone after 10 attempts or locks it for incrementally increasing time periods with each attempt. There is no way for the FBI (or Apple) to know if the feature that erases the iPhone after 10 tries is enabled or not, so they don’t even want to try and risk it.

So the FBI wants Apple to remove that restriction. That is reasonable. They should, if it is possible to do so without undue burden. The FBI should hand over the iPhone to Apple and Apple should help them to crack it.

However, this isn’t what the court order is asking Apple to do. The FBI wants Apple to create software that disables this security feature on any iPhone and give it to them. Even if it’s possible for this software to exist, it’s not right for the FBI to have it in their possession. They should have to file a court order every single time they use it. The FBI is definitely using this situation as an opportunity to create a precedent and give it carte blanche to get into any iPhone without due process.

So the answer to your question is that yes it is that secure and yes, it’s a ploy by the FBI. Whether it’s actually possible for Apple to help or not is one question and whether they should is another. Either way, the FBI should not have that software.

# Quantum Theory: ‘Spooky Action at a Distance’ seems real

This is an update to a June 2014 article posted here at A Wild Duck
and reprinted in June 2015 by Lifeboat Foundation.

In one of my first articles reprinted by Lifeboat, I provide an experimental methodology for demonstrating (or proving) the instantaneous ‘communication’ between quantum entangled particles. Even though changes to one particle can be provably demonstrated at its far away twin, the very strange experimental results suggested by quantum theory also demonstrate that you cannot use the simultaneity for any purpose. That is, you can provably pass information instantly, but you cannot study the ‘message’ (a change in state at the recipient), until such time as it could have been transmit by a classical radio wave.

Now, Dutch scientists have conducted an experiment that proves objects can instantaneously affect each other, regardless of the distance between them.
[continue below photo]…

###### [From The New York Times—Oct 21, 2015]:

Sorry Einstein.
Quantum Study Suggests ‘Spooky Action’ is Real

In a landmark study, scientists at Delft University of Technology in the Netherlands reported that they had conducted an experiment that they say proved one of the most fundamental claims of quantum theory — that objects separated by great distance can instantaneously affect each other’s behavior.

The finding is another blow to one of the bedrock principles of standard physics known as “locality,” which states that an object is directly influenced only by its immediate surroundings. The Delft study, published Wednesday in the journal Nature, lends further credence to an idea that Einstein famously rejected. He said quantum theory necessitated “spooky action at a distance,” and he refused to accept the notion that the universe could behave in such a strange and apparently random fashion.

* The 2015 Lifeboat article—in which I describe an experimental apparatus in lay terms—was reprinted from this original 2015 article Wild Duck. here at Wild Duck.

# Stephen Hawking speaks with virtually no muscular movement

Next January Stephen Hawking will be 74 years old. He has lived much longer than most individuals with his debilitating condition. In addition to being an unquestionably gifted cosmologist, he has invited controversy by supporting the pro-Palestinian, Israel-BDS boycott and warning about the dangers of alien invaders who tap into our interstellar greetings

Antisemitism, notwithstanding, this man is a mental giant. He is Leonardo. He is Einstein. Like them, his discoveries and theories will echo for generations beyond his life on earth. He is that genius.

Forty years ago, when Stephen Hawking still had mobility, he delivered a paper on a mystery regarding information-loss for entities that cross the event boundary of a black hole.

In the mid 1970s, Astronomers were just discovering black holes and tossing about various theories about the event horizon and its effect on the surrounding space-time. Many individuals still considered black holes to be theoretical. Hawking’s analysis of the information paradox seemed extremely esoteric. Yet, last month (Aug 2015) , at Sweeden’s KTH Royal Institute of Technology, Hawking presented a possible solution to the paradox that he sparked.

I can barely understand the issue and cannot articulately rephrase the problem. But my interest in the black hole event horizon takes a back seat to my interest in the amazing tool created to compensate for the famous cosmologist’s handicap. Watch closely as Stephen Hawking offers a new theory that provides a possible explanation for the paradox.

Near the end of the video (beginning at 7:22), the camera begins a steady zoom up to Hawking’s face. Unlike a year ago, when he could still smile at a joke or move his eyes, he now appears completely motionless. Throughout his speech, there is no sense of animation—not even a twitch—with or without purpose. His eyebrow doesn’t move, his fingers are not restless, he doesn’t blink anymore.

So, how, then, does Hawking speak with normal cadence and just a short delay between sentences? (If we assume that his computer adds emphasis without additional effort, I estimate that his ASCII communications rate is roughly equivalent to a 1200-baud modem, circa 1980). Yet, clearly, there must be a muscular conduit between thought and speech. How is it that his thoughts are converted to speech at almost the same rate as someone who is not paralyzed?

That magic is enabled by a tiny camera that monitors a slowly deteriorating cheek muscle. It is Hawking’s last connection to the outside world. What began as index cards with words and then an Apple II computer, has evolved into a sophisticated upgrade process involving cutting edge analysis of the professor’s slightest tick combined with sophisticated computing algorithms. The camera and software that interprets this microscopic Morse code is tied to a process that optimizes options for successive words and phrases. He is actually communicating at far less than 1200 baud, because—like a court stenographer—he employs shorthand and Huffman encoding to compress words and phrases into his twitch pipeline. Drawing on a powerful processor and connected to the Web, his gear is constantly upgraded by a specialized Intel design team. They are engaged in a race to offer Hawking the potential for communication up until he has no capacity for interaction at all.

In a recent documentary by Hawking himself,* he laments the likely day when he will no longer have any capacity for output at all. No ability to discuss physics and cosmology; no way to say “I need help” or “I love you”; no way to show any sign of cognition. At that time, he reflects, the outside world will no longer be certain that there is anything going on behind his blank stare. They will never really know when or if he wants them to pull the plug. Even more mind boggling, humanity will never know what secrets his brilliant mind has unlocked to mysteries of the cosmos.

* Referring to his 2013 autobiographical film and not the 2014 feature film about his life, Theory of Everything.

# Our Universe is Fine Tuned for Life—Why?

Consider how many natural laws and constants—both physical and chemical—have been discovered since the time of the early Greeks. Hundreds of thousands of natural laws have been unveiled in man’s never ending quest to understand Earth and the universe.

I couldn’t name 1% of the laws of nature and physics. Here are just a few that come to mind from my spotty recollection of high school science. I shall not offer a bulleted list, because that would suggest that these random references to laws and constants are organized or complete. It doesn’t even scratch the surface…

Newton’s Law of force (F=MA), Newton’s law of gravity, The electromagnetic force, strong force, weak force, Avogadro’s Constant, Boyle’s Law, the Lorentz Transformation, Maxwell’s equations, laws of thermodynamics, E=MC2, particles behave as waves, superpositioning of waves, universe inflation rate, for every action… etc, etc.

For some time, physicists, astronomers, chemists, and even theologians have pondered an interesting puzzle: Why is our universe so carefully tuned for our existence?And, not just our existence—After all, it makes sense that our stature, our senses and things like muscle mass and speed have evolved to match our environment. But here’s the odd thing—If even one of a great many laws, properties or constants were off by even a smidgen, the whole universe could not exist—at least not in a form that could support life as we imagine it! Even the laws and numbers listed above. All of creation would not be here, if any of these were just a bit off…

Well, there might be something out there, but it is unlikely to have resulted in life—not even life very different than ours. Why? Because without the incredibly unique balance of physical and chemical properties that we observe, matter would not coalesce into stars, planets would not crunch into balls that hold an atmosphere, and they would not clear their path to produce a stable orbit for eons. Compounds and tissue would not bind together. In fact, none of the things that we can imagine could exist.

Of course, theologians have a pat answer. In one form or another, religions answer all of cosmology by stating a matter of faith: “The universe adheres to God’s design, and so it makes sense that everything works”. This is a very convenient explanation, because these same individuals forbid the obvious question: ‘Who created God?’ and ‘What existed before God?’ Just ask Bill Nye or Bill Maher. They have accepted offers to debate those who feel that God created Man instead of the other way around.

Scientists, on the other hand, take pains to distance themselves from theological implications. They deal in facts and observable phenomenon. Then, they form a hypotheses and begin testing. That’s what we call the scientific method.

If any being could evolve without the perfect balance of laws and constants that we observe, it would be a single intelligence distributed amongst a cold cloud of gas. A universe that is not based on many of the observed numbers (including the total mass of everything in existence) probably could not be stable for very long.

Does this mean that  it’s all about you?! Are you, Dear reader, the only thing in existence?—a living testament to René Descartes?

Don’t discount that notion. Cosmologists acknowledge that your own existence is the only thing of which you can be absolutely sure. (“I think. Therefore, I am”). If you cannot completely trust your senses as a portal to reality, then no one else provably exists. But, most scientists (and the rest of us, too) are willing to assume that we come from a mother and father and that the person in front of us exists as a separate thinking entity. After all, if we can’t start with this assumption, then the rest of physics and reality hardly matters, because we are too far removed from the ‘other’ reality to even contemplate what is outside of our thoughts.

Two questions define the field of cosmology—How did it all begin and why does it work?  Really big questions are difficult to test, and so we must rely heavily on tools and observation:

• Is the Big Bang a one-off event, or is it one in a cycle of recurring events?
• Is there something beyond the observable universe? (i.e. the one that traces back to the Big Bang)
• Do the laws of physics and chemistry that we observe in our region of the galaxy apply everywhere?
• Is there intelligent life beyond Earth?

Having theories that are difficult to test does not mean that scientists aren’t making progress. Even in the absence of frequent testing, a lot can be learned from observation. Prior to 1992, no planet had ever been observed or detected outside of our solar system. For this reason, we had no idea of the likelihood that planets form and take orbit around stars.

Today, almost 2000 exoplanets have been discovered with 500 of them belonging to multiple planetary systems. All of these were detected by indirect evidence—either the periodic eclipsing of light from a star, which indicates that something is in orbit around it, or subtle wobbling of the star itself, which indicates that it is shifting around a shared center of gravity with a smaller object. But wait! Just this month, a planet close to our solar system (about 30 light years away) was directly observed. This is a major breakthrough, because it gives us an opportunity to perform spectral analysis of the planet and its atmosphere.

Is this important? That depends on goals and your point of view. For example, one cannot begin to speculate on the chances for intelligent life, if we have no idea how common or unusual it is for a star to be orbited by planets. It is a critical factor in the Drake Equation. (I am discounting the possibility of a life form living within a sun, not because it is impossible or because I am a human-chauvinist, but because it would not likely be a life form that we will communicate with in this millennium).

Of course, progress sometimes raises completely new questions. In the 1970s, Francis Drake and Carl Sagan began exploring the changing rate of expansion between galaxies. This created an entirely new question and field of study related to the search for dark matter.

Concerning the titular question: “Why is the universe fine-tuned for life?”,  cosmologist Stephen Hawking offered an explanation last year that might help us to understand. At least, it offers a theory, even if it is difficult to test. The media did their best to make Professor Hawking’s explanation digestible, explaining it something like this [I am paraphrasing]:

There may be multiple universes. We observe only the one in which we exist. Since our observations are limited to a universe with physical constants and laws that resulted in us—along with Stars, planets, gravity and atmospheres, it seems that the conditions for life are all too coincidental. But if we imagine countless other universes outside of our realm (very few with life-supporting properties), then the coincidence can be dismissed. In effect, as observers, we are regionalized into a small corner.

The press picked up on this explanation with an unfortunate headline that blared the famous Professor had proven that God does not exist. Actually, Hawking said that miracles stemming out of religious beliefs are “not compatible with science”. Although he is an atheist, he said nothing about God not existing. He simply offered a theory to explain  an improbable coincidence.

I am not a Cosmologist. I only recently have come to understand that it is the science of origin and is comprised of astronomy, particle physics, chemistry and philosophy. (But not religion—please don’t go there!). If my brief introduction piques your interest, a great place to spread your wings is with Tim Maudlin’s recent article in Aeon Magazine, The Calibrated Cosmos. Tim succinctly articulates the problem of a fine-tuned universe in the very first paragraph:

“Theories now suggest that the most general structural elements of the universe — the stars and planets, and the galaxies that contain them — are the products of finely calibrated laws and conditions that seem too good to be true.”

And: “Had the constants of nature taken slightly different values, we would not be here.”

The article delves into the question thoroughly, while still reading at a level commensurate with Sunday drivers like you and me. If you write to Tim, tell him I sent you. Tell him that his beautifully written article has added a whole new facet to my appreciation for being!

When I was a freshman at Cornell University some decades ago, I had a memorable teaching assistant for CS100, the entry level computer programming course taken by nearly every student in Engineering or Arts & Sciences. Gilles Brassard, a French Canadian, is now a chaired math professor at Université de Montréal and a preeminent cryptographer. He has also been inducted into the Royal Order of Canada. I am told that this is a bit like being knighted. In fact, this highest of civilian honors was established by Queen Elizabeth.

Ellery with Gilles Brassard in 2014

Gilles was a graduate student at Cornell in the mid ’70s. Back then, public key encryption was a radical concept. Named for three MIT professors who described it, RSA is now it is at the heart of every secure Internet transaction. Yet, the new generation of cryptographers refers to RSA as “classical cryptography”. The radicals have moved on to Quantum Cryptography. Gilles and his collaborator, Charles Bennett, are the pioneers and leaders in this burgeoning field. No one else is even pretender to the throne.

In its simplest terms, quantum cryptography achieves a secure communication channel because it relies on a stream of individual particles or “quanta” to convey information. If information is sent without any fat at all—just the minimum physics that can support the entropy—then any eavesdropping or rerouting of a message can be detected by the recipient. Voila! Perfect authentication, fidelity and security. Communication is secure because any attack can be detected.

But when you begin to experiment with gating individual quanta of anything, you are typically working within a world of minute, elementary particles—things like photons or electrons with properties that change as they are measured. And the issue of measurement doesn’t just invoke Heisenbeg (he demonstrated that measurements change a property being measured), but also superpositioning of states that resolve only when they are observed. Say, Whaaht?!

Perhaps, we are getting ahead of ourselves. The goal of this article is to share with Wild Ducks my fascination over the strange, yet repeatable experimental results achieved by Gilles and by quantum physicists. I am no expert, but given a sufficiently lay explanation, marvel with me at a baffling outcome. It will shake your perception of reality. It suggests that science and math are not as black and white as you believed.

Albert Einstein worked for years to develop an understanding of entangled particles that was consistent with his earlier work in special relativity. By the mid 20th century, physicists were reasonably certain that information could never be conveyed faster than light. It’s not just the math that convinced them. It was the crazy things that would ensue if light speed was not a universal speed limit…

If information—mass or energy, particle or wave, substantive or pure thought—if any of these things travels faster light, then given the time dilation of things moving in relation to each other, very unlikely things would be possible. For example:

• If information travels faster than light. it would be possible to deliver a reply to a message that had not yet been sent
• If information travels faster than light, it would be possible to send a message back in time and prevent your parents from meeting each other

So the math that imposes a universal speed limit also preserves our concept of reality. Sure, we can accept that energy and mass are fungible. We can even accept that distance and time are malleable. But time paradoxes defy common sense and beg for a solution that prevents them, altogether.

When the most reasonable explanation of quantum entanglement collided with our understanding of special relativity, efforts to reconcile the two theories or arrive at a unifying model became known as the EPR Paradox, named after Einstein and his colleagues, Boris Podolsky and Nathan Rosen. Given assumptions considered axiomatic, the math suggests that information passes between entangled particles faster than light — in fact, instantaneously and at any distance. Near the end of his life, Einstein reluctantly acknowledged that there must be an error in math, or in basic assumptions, or that some undiscovered, rational explanation could resolve the paradox. Ultimately, he dismissed the notion of particles synchronously and instantly communicating with each other as “spooky action at a distance”. Just as his other memorable quote, “God doesn’t play dice with the world”, the two phrases are indelibly inscribed onto the great physicist’s epitaph.

Even before humans could travel to the moon (about 1.3 light seconds from earth) researchers tried to test Einstein’s theory. But even with very precise instruments to measure time and distance, it was still difficult in the 1930s and 40s to create, transport and measure characteristics of elementary particles.

Back then, Einstein assumed that we would measure wave collapse positions or particle momentum. Today, scientists measure particle polarization or spin—or its destruction. These properties are more easily changed and measured. In the 1960s and 70s, the EPR paradox returned to popular inquiry when physicists John Stewart Bell—and later Lamehi-Rachti and Mittig, conducted experiments that supported Einstein’s original thesis. That is, faster-than-light communication seemed to take place.

So, given appropriate experimental methodology, could it actually be possible to receive a package before it was sent?

Probably not. But the experimental result is more shocking than “Yes” and way more interesting than “No”. In fact, the outcome to recent experiments force us to confront our understanding of causality. It makes us wonder if reality is an illusion. It shatters our concept of time and space even more than Einstein’s more famous theory of relativity.

Since measurements made in nanoseconds are difficult to visualize, I shall illustrate the experiment and the surprising results by stretching the distance involved. But this is not a metaphor. Actual results actually play out as described here.          Continue below image…

The Experiment

Suppose that I create a pair of entangled particles. It doesn’t matter what this means or how I accomplish the feat. I wish only to test if a change to one particle affects the other. But more specifically, I want to separate them by a great distance and determine if a change to the local particle influences the remote particle instantly, or at least faster than accounted for by a light-speed signal between the two of them.

If you could construct such an experiment, it seems reasonable to assume that you would observe one of four possible outcomes. The results should demonstrate that the remote particle is either:

• not affected at all
• affected – apparently instantly or nearly in synchrony with the first particle
• affected – but only after a delay in which a light speed signal could reach it
• uncorrelated or inconsistently correlated with it’s entangled mate

The actual result is none of these, and it is almost too stunning to contemplate. In fact, the particle is highly correlated, but the correlation is with the observer’s cognition. But again, I am getting ahead of myself. Let’s look at our experimental set up…

I send an astronaut into space with a box that contains an experimental apparatus. The astronaut travels a distance about as far away from Earth as the sun. It takes about 8 minutes for light (or any message) to reach the astronaut. The box contains the “twin” of many paired particles back on earth. Each particle is trapped in a small crystal and numbered. The box also contains an instrument that can measure the polarization of any photon and a noisy inkjet printer that can be heard from outside the box.

Back on the earth, I have the mate to each paired photon. All of my photons exhibit a polarity than can be measured and expressed as a 2-D angle with any value from 0 to 360 degrees. Our test uses polarized filters to measure the angle of polarity and is very accurate. We can record 4 digits of precision. For the purpose of this test, it doesn’t matter if our measurement affects a particle or even if it destroys it, because we can repeat the test many times.

Clocks on the earth and at the spaceship are synchronized, and the ship is not moving relative to the earth. It is effectively stationary. On earth, each numbered photon is disturbed exactly on the hour. At the spaceship, an astronaut measures the polarity of a paired photon one minute before and one minute after each hourly event.

We know that our photons all begin with a polarity of 15.48 degrees as measured relative some fixed and rigid orientation. The astronaut confirms this with each photon tested before the hourly chime. But at each hour (say 3PM in New York), we disturb a photon on earth (radiate it or pass it through a filter). This changes its polarity.

Suppose that the earth lab determines that a photon was changed at 3PM from a polarity of 15.48° to a polarity of 122.6°. (Any new polarization will do).

Recall that the spaceship is 8 light-minutes away. We wish to determine if photon pairs communicate more quickly than the speed of light. Question: If the astronaut tests the polarity of the paired photon at 3:01 PM (just after its mate on the earth has been altered), do you suppose that he will still detect the original spin of 15.48°? Or will he detect the new spin of 122.6°?

The answer is more startling than either outcome. In fact, it leaves most people in disbelief or outright denial. (Yes…You are being set up for a surprise. But what is it?!)

To make things more interesting, let’s say that you cannot see the results. The box is sealed during the experiment, but you can hear the printer within the box as it prints the polarity after each test. Each time you run the experiment, you unplug the printer right after you hear it print a result. Then, you open the box and read the results.

Spookiness at a Distance

If you open the box less than 8 minutes after the hour (that is, less than the time that it takes light to travel from earth to the astronaut), the printout will always show a polarity of 15.48°. If you open the box after 8 minutes, you will always see a polarity of 122.6°. In both cases, the test was completed and the result was printed in the first minute after the photon on earth was shifted to a new polarization.

Wait! It gets better! If you eventually learn to distinguish the different sounds that the printer makes when it records either result, it will always print 15.48°, even if you wait 8 minutes before actually looking at the print out. The fact that you found a way to ‘cheat’ apparently changes the outcome. Or at least, that is the conclusion that a reasonable person would make when presented with knowledge-induced causality. It’s either that—or we are all crazy.

But quantum physicists (and cryptographers like Gilles) have another explanation. They point out that Einstein’s theory of special relativity doesn’t actually prohibit faster than light phenomena. It only prohibits faster than light communication. If the thing that happens instantaneously cannot be pressed into conveying useful information, then it doesn’t violate special relativity! That is, perturbations applied to one part of a quantum entangled pair are apparently instantaneous, but an observation or experiment on the remote twin will not produce a result that allows you to determine the new state until sufficient time for a light beam to pass from one to the other.

Alternate explanation: This one is known as “Schrödinger’s cat”. In my opinion it was contrived to support both quantum mechanics and the EPR paradox. It states that the paired photon simultaneously existed at both polarities until someone opened the box or otherwise learned its state. That is, the observed result was not a real thing, until the observation forced it to collapse into reality. Common sense says that this explanation makes no sense! And yet, it neatly resolves a lot of mathematics. Go figure!

Here is another explanation. I like this one better… Perhaps time is not an arrow that always moves in one direction and one speed. In contradiction to our intuition (based on a limited set of human senses), perhaps we are not continuously pushed forward at the tip of that arrow. –What if the science fiction about space and time being folded is true? –Or perhaps… Oh Heck! I’ll go with the first explanation: From our perspective, entangled particles change simultaneously, but mysterious forces of nature don’t allow us to observe the change until the laws of special relativity allow it. Why is that?… Because if we could observe information before it was ‘legal’ to do so, then we could change the past.

The take away to this experiment is that just like wave velocity, some things move faster than the speed of light, but useful information cannot do so. For useful information, light is still the speed limit.

Quantum physicists do not typically use my thought experiment, which I call Hidden Printer Result. Instead, they explain that Bell’s experiments prove that the spin measurement distant, entangled particles demonstrates they are connected in a spooky way (because the detected spin is provably opposite for each measurement)—but that Einsteien’s theory is preserved, because individuals measuring particles cannot know that their measurements are correlated until they communicate or meet. That communication is still restricted to light-speed limits, and therefore, useful information did not violate special relativity.

The Hidden Printer Result is a way in which we laypeople could observe and marvel at the transmission of unbelievably fast, but ‘useless’ information. It is a valid experimental setup that allows us to better comprehend that which defies common sense.

This Youtube video provides a more conventional, but more complex explanation of quantum entanglement and the EPR P

Gilles Brassard is not a physicist, but a computer scientist and cryptographer. Yet he has received awards that are typically given to physicists. His experiments and those by scientists around the world render a layperson like me dumbstruck.

Of course, Gilles didn’t ship an inkjet printer into space with half of an entangled pair (my experimental construct). Instead, he measured and recorded a particle state in a way that is self-encrypted. He then he sent the encryption key from the distant particle that had been disturbed. Even though the key is just two bits (too little to contain a measurement of photon spin), the old spin was observed if the key was applied before the time it would have taken to classically transmit and receive the information.

Just as with my experimental setup, results are almost too much to wrap a proverbial brain around. But truths that are hard to believe make great fodder for Wild Ducks. If my non-scientific, jargon free explanation gets across the results of the EPR experiment (actually, it is at the leading edge of my own understanding), then you are now as puzzled and amazed as me.

Update: Dutch Experiment proves Spooky Action at a Distance

Related:

• Wikipedia explanation Faster than Light. It’s better than the article on EPR Paradox